Math 524 Exam 6 Solutions

The first three problems all concern $A=\left(\begin{array}{cc}-1 / 3 & -1 / 6 \\ 1 / 3 & -5 / 6\end{array}\right)=\left(\begin{array}{cc}1 & 1 \\ 1 & 2\end{array}\right)\left(\begin{array}{cc}-1 / 2 & 0 \\ 0 & -2 / 3\end{array}\right)\left(\begin{array}{cc}2 & -1 \\ -1 & 1\end{array}\right)$

1. Solve the discrete-time system given by $x(n)=A x(n-1)$, with initial condition $x(0)=\binom{0}{1}$.

A basis of eigenvectors is $B=\left\{b_{1}, b_{2}\right\}$, for $b_{1}=(1,1)^{T}, b_{2}=(1,2)^{T}$. We have $[x(0)]_{B}=\binom{-1}{1}$. We have $x(n)=A^{n} x(0)=\left(P D P^{-1}\right)^{n} x(0)=P D^{n} P^{-1} x(0)$. Because $P^{-1} x=[x]_{B}$, we have $[x(n)]_{B}=D^{n}[x(0)]_{B}=D^{n}\binom{-1}{1}=\binom{-(-1 / 2)^{n}}{(-2 / 3)^{n}}$. Hence $x(n)=P\binom{-(-1 / 2)^{n}}{(-2 / 3)^{n}}=\binom{-(-1 / 2)^{n}+(-2 / 3)^{n}}{-(-1 / 2)^{n}+2(-2 / 3)^{n}}$, or $x_{1}(n)=(-2 / 3)^{n}-(-2)^{-n}, x_{2}(n)=$ $2(-2 / 3)^{n}-(-2)^{-n}$. One may check this with some values such as $n=0,1,2$; or, one may check that this satisfies the difference equation and initial condition.
2. Solve the first-order system given by $\frac{d}{d t} x=A x$, with initial condition given by $x(0)=\binom{0}{1}$.

We calculate a basis of eigenvectors as before, and note that $x(0)=-b_{1}+b_{2}$. This time $x(t)=e^{A t} x(0)=e^{A t}\left(-b_{1}+b_{2}\right)$. We have $e^{A t} b_{1}=e^{-t / 2} b_{1}$ and $e^{A t} b_{2}=$ $e^{-2 t / 3} b_{2}$, since they are eigenvectors of A. Hence $x(t)=-e^{-t / 2} b_{1}+e^{-2 t / 3} b_{2}=$ $\binom{-e^{-t / 2}+e^{-2 t / 3}}{-e^{-t / 2}+2 e^{-2 t / 3}}$. One may check that this satisfies the DE and initial condition.
3. Solve the second-order system given by $\frac{d^{2}}{d t^{2}} x=A x$, with initial conditions given by $x(0)=\binom{0}{1}$ and $\dot{x}(0)=\binom{1}{0}$.

In the B basis, we have $[x(0)]_{B}=\binom{-1}{1},[\dot{x}(0)]_{B}=\binom{2}{-1}$, and $\frac{d^{2}}{d t^{2}}[x]_{B}=[A]_{B}[x]_{B}=$ $D[x]_{B}$. For convenience, set $\omega_{1}=\sqrt{1 / 2}$ and $\omega_{2}=\sqrt{2 / 3}$. We can write down the solution $[x(t)]_{B}=\binom{(-1) \cos \left(\omega_{1} t\right)+\left(2 / \omega_{1}\right) \sin \left(\omega_{1} t\right)}{(1) \cos \left(\omega_{2} t\right)+\left(-1 / \omega_{2}\right) \sin \left(\omega_{2} t\right)}$. We then compute $x(t)=P[x(t)]_{B}=$ $\binom{(-1) \cos \left(\omega_{1} t\right)+\left(2 / \omega_{1}\right) \sin \left(\omega_{1} t\right)+(1) \cos \left(\omega_{2} t\right)+\left(-1 / \omega_{2}\right) \sin \left(\omega_{2} t\right)}{(-1) \cos \left(\omega_{1} t\right)+\left(2 / \omega_{1}\right) \sin \left(\omega_{1} t\right)+(2) \cos \left(\omega_{2} t\right)+\left(-2 / \omega_{2}\right) \sin \left(\omega_{2} t\right)}$. One may check that this satisfies the initial condition (and, time permitting, the DE).

The last problem concerns $A=\left(\begin{array}{cc}-2 & 1 / 2 \\ -2 & 0\end{array}\right)=\left(\begin{array}{cc}1 & -1 \\ 2 & 2\end{array}\right)\left(\begin{array}{cc}-1 & 2 \\ 0 & -1\end{array}\right)\left(\begin{array}{cc}1 / 2 & 1 / 4 \\ -1 / 2 & 1 / 4\end{array}\right)$.
4. Solve the first-order system given by $\frac{d}{d t} x=A x$, with initial condition given by $x(0)=\binom{0}{1}$.

We have a basis of generalized eigenvectors $S=\left\{s_{1}, s_{2}\right\}$, for $s_{1}=(1,2)^{T}$ (of order 1, hence an eigenvector), and $s_{2}=(-1,2)^{T}$ (of order 2). Note that $x(0)=1 / 4 s_{1}+1 / 4 s_{2}$. We have $x(t)=e^{A t} x(0)=e^{A t}\left(1 / 4 s_{1}+1 / 4 s_{2}\right)$. Because s_{1} is an eigenvector, $e^{A t} s_{1}=$ $e^{-t} s_{1}$. Because s_{2} is a generalized eigenvector of order $2, e^{A t} s_{2}=e^{-t}(I+(A-$ $\lambda I) t) s_{2}=e^{-t}(I+(A+I) t) s_{2}=e^{-t}\left(\begin{array}{cc}1-t \\ -2 t / 2 \\ -2 t+t\end{array}\right) s_{2}=e^{-t}\binom{t-1+t}{2 t+2(1+t)}=\binom{e^{-t}(2 t-1)}{e^{-t}(4 t+2)}$.
Putting it all together, we get $x(t)=1 / 4 e^{-t} s_{1}+1 / 4\binom{e^{-t}(2 t-1)}{e^{-t}(4 t+2)}=\frac{e^{-t}}{4}\binom{2 t}{4 t+4}=$ $\binom{t e^{-t} / 2}{(t+1) e^{-t}}$. One may check that this satisfies the DE and initial condition.

